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Motivation

• Employee pay is the largest source of expenditures for
organizations.

• Setting the right salaries is of first order importance.

• U.S. legislation prohibits employers from sharing information
on their employees’ compensation with each other.

• Concerns about coordinating to pay lower salaries.

• Companies are still allowed to use aggregated data (e.g.,
median salary by position) provided by third parties.

• Practice known as salary benchmarking.
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Research Question

• Despite widespread use of salary benchmarking, no evidence on

its effects.

• Research Question: how does salary benchmarking affect

pay setting?

• Implications for how we model/understand labor markets.

• Relevant for an ongoing policy debate.
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Overview of the Paper

• Measure effects of benchmarking using administrative data.

• Leverage the roll-out of a new benchmarking tool.

• Event-study analysis for causal identification.

• Suggest significant effects on pay-setting.

• We offer a simple model that:

• Can explain main findings.

• Discusses implications for models of the labor market.

• Discusses policy implications.
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Institutional Context
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Popularity of Benchmarking

• To gather complementary data, we conducted a survey of HR
managers.
• Sample of managers recruited from the Society of Human Resource

Management (SHRM).

• Strong majority (87.6%) report using salary benchmarking to

set pay.

• Benchmarking is prominent in interviews with HR executives

(Adler, 2020).

• Prominent in HR textbooks too (e.g., Zeuch, 2016).
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History of Benchmarking

• Salary benchmarking dates back to 1980s (Adler, 2022).

• Initially, benchmarks created by specialized consulting firms.

• Based on survey data.

• E.g., Abbott, Langer and Associates, Korn Ferry, Hayes Group,

Mercer, Radford, Willis Towers Watson.

• More recently, free online tools became popular.

• Based on crowd-sourced data.

• E.g., Glassdoor, Comparably, and LinkedIn,
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Collaborating Institution

• Since 2016, the largest U.S. payroll services company started
its own benchmarking tool.

• Well-established company (market cap of around $100 billion).

• Arguably the best tool on the market.

• Administrative data (payroll records instead of surveys).

• Massive sample sizes (650,000 firms and 20 million employees).

• Highly responsive, due to high-frequency data. Comparison to Free Source
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Screenshots of the Salary Benchmarking Tool
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A Sketch of the Model
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Model Setup

• First bid for workers in a first-prize auction.

• A firm knows the value it gets from the worker.

• A firm doesn’t know the values other firms get from worker.

• Standard assumption: affiliated values. +

• It is optimal to bid below own valuation.

• Whether to shade bid a little or a lot depends on what the firm
thinks about the worker’s market value.
• Salary benchmark is useful information!
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Quote from HR Textbook

“Using surveys to benchmark compensation levels ensures

that the pay levels determined by the organization are not

extraordinarily misaligned with market practice – i.e., pay

is not too low or too high. Determining the appropriate

amount of compensation is a balancing act. No organi-

zation wants to waste their financial resources by paying

too high relative to the market; and those who pay too low

risk unwanted turnover from employees looking for a better

deal elsewhere.” – Berger & Berger (2008), p. 125.
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Testable Predictions

• What happens when one firm gets access to better benchmark

information?

• Prediction 1: Salaries get “compressed” towards the

benchmark.

• Prediction 2: The average salary could go up, down, or stay

the same.
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Data and Research
Design
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Data Sources

• Payroll Database: detailed payroll records.

• When the employee was hired and for what pay.

• Tool Usage Database: search behavior in the benchmark tool.

• Whether benchmark was “looked up” before the employee was hired.

• Benchmark Database: historical compensation benchmarks.

• Exact benchmark value shown in the tool.
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Firms in the Sample

• Slow but steady adoption since inception (Dec-2015).

• Anecdotally, who adopts and when they adopt is largely arbitrary.

• 586 “treatment” firms that gained access to the tool.

• On-boarding dates between Dec-2015 and Jan-2020.

• 1,419 “control” firms that never gained access to the tool.

• Selected to match firms with access to the tool in key firm

characteristics (e.g., size, state, industry).

• Sample is quite representative of medium and large firms. +
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Typical Tool Usage

• Important fact: firms look up the benchmark, but far from

always.

• 534 firms gained access to the tool before 2019-Q4.

• 199 (37.3%) of these firms hired in at least one position during

2019-Q4.

• They looked up the salary for 20.8% of these new hires.
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Position Types

• Each new hire is assigned to one category (at firm-position

level):

• Searched Position: positions that are (eventually) searched in

treatment firms (N = 5, 266).

• Non-Searched Position: positions that are never searched in

treatment firms (N = 39, 686).

• Non-Searchable Position: positions in control firms

(N = 156, 865).

• Average pre-treatment characteristics similar across three

categories. +
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Most Common Searched Positions

(1) (2) (3)

Position Title Searched Non-Searched Non-Searchable

Bank Teller 539 [12] 287 [24] 1,976 [87]

Customer Service Representative 468 [44] 4,401 [170] 4,012 [385]

Security Guard 286 [6] 139 [44] 6,263 [95]

Hotel Cleaner 208 [2] 379 [5] 1,058 [17]

Hand Packer 155 [4] 234 [17] 1,957 [55]

Patient Care Coordinator 117 [3] 103 [14] 133 [29]

Receptionist 93 [15] 310 [86] 2,911 [238]

Cook 86 [6] 334 [21] 1,606 [85]

Waiter/Waitress 84 [7] 1,113 [18] 2,986 [87]
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Non-Searchable: Placebo Onboarding Dates

• Event-study analysis revolves around the onboarding date.

• Challenge: by definition, control firms do not have an

onboarding date.

• Solution: assign a “placebo” on-boarding date.

• Match treatment firm that is most similar in observables.

• E.g., if Ford gains access but Fiat does not, we assume Fiat would

have gained access when Ford did.
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Effects on Compression
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DiD Specification

Yi ,j ,t = ∑
s∈S

αk
1,s ·As

j ,t ·Ti ,j + ∑
s∈S

αk
2,s ·As

j ,t + αk
3 ·Ti ,j +Xi ,j ,tα

k
4 + δkt +ψk + εki ,j ,t

• Yi ,j ,t : abs. distance to benchmark.

• Ti ,j : dummy for Searched positions.

• As
j ,t : event-study dummies for onboarding.

• k = 1: Searched vs. Non-Searchable.

• k = 2: Searched vs. Non-Searched.
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Searched vs. Non-Searched
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Searched vs. Non-Searched
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Searched vs. Non-Searchable

Hired  Before Firm Access Hired  After Firm Access

Non-Searchable Positions

Searched Positions

N = 5,261 hires (285 firms, 324 pos)
N = 156,734 hires (1,419 firms, 1,175 pos)
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Searched vs. Non-Searchable

N = 161,995 hires (1,704 firms, 1,177 pos)
Diff. p-value: < 0.001

Hired  Before Firm Access Hired  After Firm Access

On Average 19.8%
On Average 13.6%From Benchmark
From Benchmark

0

5

10

15

20

25

30
A

bs
ol

ut
e 

%
-D

iff
er

en
ce

 S
al

ar
y 

vs
. B

en
ch

m
ar

k

-5 -4 -3 -2 -1 +1  +2 +3 +4 +5

Quarters Relative to Benchmark Onboarding Date
27



Complementary Survey Experiment

• In the SHRM survey, we embedded a survey experiment.
• We asked them to choose a salary for a candidate in a position they

were looking to fill.

• We provided (hypothetical) a benchmark.

• We measure if they change their salary offer in response to the

benchmark.

• Survey results indicate significant compression toward
benchmarks.
• Consistent in direction and magnitude with the results from the

natural experiment. +
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Heterogeneity Analysis

• In HR interviews (Adler, 2020), salary benchmarking seems to
play a more prominent role among low-skill workers.
• E.g., workers referred to as “interchangeable.”

• To explore this, we split positions by low-skill vs. high-skill.
• Low-skill are jobs that typically require no more than a high school

diploma, employ younger employees and with modest pay.

• 42% of the sample categorized as low-skill.
• E.g.: Hand Packer, Bank Teller, Receptionist.

• 58% of the sample categorized as high-skill.
• E.g.: Software Developer, Ophthalmic Technician, Production

Operations Engineer.
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High Skill

 Exact Benchmark value

Hired Before
Firm Access

On Averge 24.0%
From Benchmark

↓
Hired After
Firm Access
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Low Skill

 Exact Benchmark value

Hired Before
Firm Access

On Averge 14.5%
From Benchmark

→
Hired After
Firm Access
On Averge 8.7%
From Benchmark
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Effects on Levels
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Searched vs. Non-Searched

N = 44,780 hires (586 firms, 829 pos)
Diff. p-value: 0.756

Hired  Before Firm Access Hired  After Firm Access

Average log(Salary): 10.532
Average log(Salary): 10.530
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Searched vs. Non-Searchable

N = 161,995 hires (1,704 firms, 1,177 pos)
Diff. p-value: 0.308

Hired  Before Firm Access Hired  After Firm Access

Average log(Salary): 10.532
Average log(Salary): 10.549
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Low-Skill Salary (Searched vs. Non-Searchable)

N = 71,822 hires (1,073 firms, 185 pos)
Diff. p-value: 0.001

Hired  Before Firm Access Hired  After Firm Access

Average log(Salary): 10.147 Average log(Salary): 10.214
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Low-Skill Retention (Searched vs. Non-Searchable)

N = 67,034 hires (1,050 firms, 181 pos)
Diff. p-value: 0.029

Hired  Before Firm Access Hired  After Firm Access

Avg. Probability 41.1%
Avg. Probability 47.9%
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Conclusions
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Conclusions

• We present evidence that firms change salaries in response to
benchmark information.

• Effects are surprising, according to a forecast survey with experts.

• We provide a model that can fit the main facts.

• Highlight that salary dispersion can be, at least in part, attributed to

information frictions.
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Policy Implications

• In recent years, the FTC, DOJ and White House have revised
their statements and policies about salary benchmarking.

• Discussion around the trade-off between pro-competitive and

anti-competitive effects.

• While more research is needed, we revised our beliefs in favor
of salary benchmarking:

• Our model formalizes the pro-competitive argument: average salary

goes up in equilibrium.

• Evidence suggests some desirable effects even in partial equilibrium:

average salary and retention go up for low-skill positions.
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